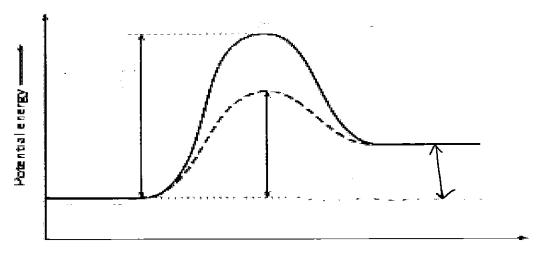
Chapter 16 & 17 Reaction Rates & Equilibrium Study Guide

Section 16.1 & 16.2 Reaction Rates and The Factors that affect Reaction Rates

Part A- Completion

Word Bank			
Activation	Increasing	Rates	Temperature
Catalyst	Minimum	React	
Energy	Products	Slower	
Use the word bank above section.	e to check your understa	nding of the concepts a	and terms that are introduced in this
1 measus	re the speed of any char	ge that occurs within	1
a time interval. Collis	sion theory states that p	articles <u>2</u> when	2
they collide, provide	d that they have enough	<u> </u>	3
The rate at which	h a chemical reaction o	ccurs is determined	4
by an4 energ	y barrier. The activation	energy is the5	5
energy that reactants	s must have to go to	6 The higher the	6
activation energy ba	rrier, the7 the re	action. Chemists help	7
reactants overcome	the activation barrier in	a number of ways.	8
Two effective metho	ds are to increase the _	8 at which the	9
reaction is done or u	ise a <u>9</u> . Rates of r	eaction can also be	10.
increased by10	_ the concentration of r	eactants.	
Part B- True-False Classify each of these st	atements as always true	(AT); sometimes true (S	ST); or never true (NT).
11 An increa	se in temperature will ge	nerally increase the rate	of a reaction.
12 A catalyst	is considered as a reacta	nt in a chemical reaction	n.
 -	of a reaction can be incr	eased by increasing rea	ctant concentration or decreasing parti
size.			
14. An enzym	e is a biological catalyst		


Part C- Matching

Match each description in Column B to the correct term in Column A

	Column A	Column B
15.	rate a.	synonym for an activated complex
16.	collision theory b.	speed of a change that occurs over time
17.	activation energy c.	substance that interferes with the action of a catalyst
18.	transition state d.	Particles can react to form products when they collide, provided they have enough kinetic energy.
19.	catalyst e.	substance that increases the rate of a reaction without being used up
20.	inhibitor fa	minimum energy particles must have in order to react

Part D- Questions & Problems

- 1. An ice machine can produce 120 kg of ice in 24 hours. Express the rate of ice production in kg/hr. In kg/day. In g/day. In kg/year.
- 2. Which of the following will increase the rate of a reaction?
 - a. Increase particle size
- c. decrease concentration
- b. Increase temperature
- d. add a catalyst.
- 3. Label the following potential energy diagrams: (Label: reactants, products, activation energy without catalyst, activation energy with catalyst, activated complex, ΔH)

Is this reaction endothermic or exothermic? Explain.

Section 17.1 Equilibrium: A State of Dynamic Balance In your textbook, read about chemical equilibrium.

1.	When a reaction results in almost complete conversion of reactants to products, chemists
	say the reaction goes to
2.	A reaction that can occur in both the forward and the reverse directions is called a(n)
3.	is a state in which the forward and reverse reactions balance
	each other because they take place at equal rates.
4.	At equilibrium, the concentrations of reactants and products are,
	but that does not mean that the amounts or concentrations are
5.	Equilibrium is a state of, not one of
	rour textbook, read about equilibrium expressions and constants.
roi	each statement below, write true or false.
	6. The law of chemical equilibrium states that at a given pressure, a chemical system may reach a state in which a particular ratio of reactant to product concentrations has a constant value.
	7. The equation $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$ is an example of a homogeneous equilibrium.
	8. If an equilibrium constant has a value less than one, the reactants are favored at equilibrium.
_	9. The value for K_{eq} is constant only at a specific volume.
	10. If the equilibrium constant for a reaction at 300 K is 49.7, the concentration of the reactants will be greater than the concentration of the products.
	11. A heterogeneous equilibrium means that reactants and products are present in more than one state.
	12. The product of the forward chemical reaction is HI, for the equilibrium expression: $K_{eq} = \frac{[H\Pi]^2}{[H_0]\Pi_0]}$

With each of the following 4 equilibrium equations, write the equilibrium constant (K) expression for each. Also, determine if the equilibrium is heterogeneous or homogeneous.

$$\circ$$
 4NH₃(g) + 5O₂(g) \rightleftharpoons 4NO(g) + 6H₂O(g)

$$\circ$$
 2NO₂(g) \rightleftharpoons N₂O₄(g)

$$\bullet \ \mathsf{N}_2(\mathsf{g}) + 3\mathsf{H}_2(\mathsf{g}) \rightleftharpoons 2\mathsf{N}\mathsf{H}_3(\mathsf{g})$$

Read the following table below. Based on the data in the table, put a star next to the reaction which contains the largest amount of product(s) at equilibrium. Put two stars next to the reaction which contains the largest amount of reactant(s) at equilibrium. Circle the number of the reaction(s) that have concentrations that represent the systems at equilibrium. For each system that is not at equilibrium, change the concentration of *only one* of the reactants or products do that the ratio represents the system at equilibrium.

Reaction	Concentrations	Equilibrium Constant (K _{eq})
1. $2CH_4(g) \rightleftharpoons C_2H_2(g) + 3H_2(g)$	$[CH_A] = 0.500M$ $[C_2H_2] = 0.194M$ $[H_2] = 0.582M$	0.153
2. $HCONH_2(g) \rightleftharpoons NH_3(g) + CO(g)$	$[HCONH_2] = 1.9 \times 10^{-2}M$ $[NH_3] = 0.30M$ [CO] = 0.30M	4.8
3. $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$	$[PCl_5] = 0.30M$ $[PCl_3] = 0.45M$ $[Cl_2] = 0.22M$	1.8
4. $N_2O_4(g) \rightleftharpoons 2NO_2(g)$	$[N_2O_4] = 0.754M$ $[NO_2] = 5.60 \times 10^{-2}M$	4.16 × 10 ⁻³
5. $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$	$[H_2] = 0.110M$ $[I_2] = 0.500M$ [HI] = 0.780M	50.2

In your textbook, read about determining equilibrium constants.

A chemist did two experiments to determine the equilibrium constant for the reaction of sulfur dioxide with oxygen to form sulfur trioxide. Use the table showing the results of the experiments to answer the following questions.

2SO ₂ (g) + O ₂ (g) ⇌ 2SO ₃ (g) at 873 K			
Ехр	eriment 1	Experiment 2	
Initial concentrations	Equilibrium concentrations	Initial concentrations	Equilibrium concentration
$[SO_2] = 2.00M$	$[SO_2] = 1.50M$	$[SO_2] = 0.500M$	$[SO_2] = 0.590M$
$[O_2] = 1.50M$	$[O_2] = 1.26M$	$[O_2] = 0M$	$[O_2] = 0.0450M$
$[SO_3] = 3.00M$	$[SO_3] = 3.50M$	$[SO_3] = 0.350M$	$[SO_3] = 0.260M$

13.	Write the equation to calculate the equilibrium constant for the reaction.
14.	Is this reaction an example of a homogeneous or heterogeneous equilibrium?
15.	Calculate the equilibrium constant from the data obtained in experiment 1.
16.	What is the equilibrium constant for the reaction in experiment 2?
17.	Was it necessary to calculate both equilibrium constants? Why or why not?
18.	What does this experiment show about the initial concentrations of products and reactants in a reversible reaction?

Section 17.2 Factors Affecting Chemical Equilibrium

In your textbook, read about Le Châtelier's Principle.

Answer the following questions.

2. What are three kinds of stresses that can be placed on a system?

For each reaction below, state the direction, left or right, in which the equilibrium will shift when the indicated substance is added. Identify one other way in which the reaction could be shifted in the same direction you indicated. (Hint: There may be more than one way to do this.)

- **3.** Reaction: $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$; NH_3 added
- **4.** Reaction: $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$; H_2 added
- **5.** Reaction: $CO(g) + H_2O \rightleftharpoons CO_2(g) + H_2(g)$; H_2O added
- **6.** Reaction: $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$; SO_3 added
- 7. Reaction: $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$; SO_2 added
- **8.** Reaction: $2NCl_3(g) \rightleftharpoons N_2(g) + 3Cl_2(g)$; NCl_3 added

For each reaction below, indicate in which direction the equilibrium shifts when the stated stress is applied to the system. Write R if the reaction shifts to the right, L if it shifts to the left, or NC if there is no change.

Reaction	Stress
20. $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g) + heat$	temperature increase
21. $CO(g) + Fe_3O_4(s) \rightleftharpoons CO_2(g) + 3FeO(s)$	volume increase
22. $C_2H_2(g) + H_2O(g) \rightleftharpoons CH_3CHO(g) + heat$	temperature decrease
23. $2NO(g) + H_2(g) \rightleftharpoons N_2O(g) + H_2O(g) + heat$	volume decrease
24. Heat $+ H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$	temperature decrease
25. $H_{\bullet}(g) + CL(g) \rightleftharpoons 2HCl(g) + heat$	volume decrease

Summing up Le Chatelier's Principle

Changing Concentration

Add more reactants	R → P
Add more products	R←P
Remove reactants	$R \leftarrow P$
Remove products	R → P

Changing Temperature

Increasing Temperature/ Adding Heat (endothermic reaction) Increasing Temperature/ Adding Heat (exothermic reaction)	$R \rightarrow P$ $R \leftarrow P$
Decreasing Temperature/ Removing Heat (endothermic rxn) Decreasing Temperature/ Removing Heat (exothermic rxn)	R ← P R → P

Changing Pressure

Generally, as the pressure increases, the reaction will shift in the direction of the least amount of gases. As the pressure decreases, the reaction will shift in the direction of the most amount of gases. **LOOK** at the number of moles of gases in both reactants and products.

For example: formation of water from hydrogen and oxygen: $2H_2 + O_2 \leftarrow \rightarrow 2H_2O$ 3 moles 2 moles

At high pressure: $R \rightarrow P$ (less moles of gas) At low pressure: $R \leftarrow P$ (more moles of gas)

Example: The Haber process (The formation of ammonia, an exothermic reaction)

$$N_2(g) + 3H_2(g) \leftarrow \rightarrow 2NH_3(g)$$

- a. What would be the effect of raising the temperature on this reaction and why?
- b. What would be the effect of increasing the pressure and why?
- c. What would happen if you decrease the concentration of NH₃?
- d. What would happen if you add more N_2 ?

UNIT 5 — ASSIGNMENT 98

For these questions predict what changes will take place resulting from the changes in concentration, pressure, or heat. Le Chatelier's Principle will be helpful in making these predictions.

Le Chatelier's Principle: If a system at equilibrium is changed, the system will partially counteract that change.

Predict the result of these changes on the following equilibrium system(s):

- 1. Cu²⁺ (light blue! + 4NH₃ (colorless) \times Cu(NH₃)₄²⁺ (dark blue)
 - a. Add Cu²⁺ solution
 - b. Add NH3 solution
 - c. Remove NH3
 - d. Add $Cu(NH_3)4^2$ +
- 2. $2CO + O_2 \longrightarrow 2CQ_2 + heat$
 - a. Add CO2
 - b. Remove O2
 - c. Add CO
 - d. Add heat
 - e. Remove heat
- 3. $N_2 + 3H_2 = 2NH_3 + heat$
 - a. Remove NHS
 - b. Add H₂
 - c. Remove N2
 - d. Add heat
 - e. Remove heat (cool)
- 4. Cr₂O₇² (orange) + OH (colorless) = 2CrO₄² (yellow) + H + (colorless)
 - a. Add H+
 - b. Remove OH
 - c. Add Ba2+ (reacts with CrO₄² but not with Cr₂O₇²)
 - d. Remove Cr₂ 37²